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Abstract

Neural Networks are an incredibly powerful tool used to solve complex problems.

The actual functioning of this tool and its behaviour when applied to different kind of
problems is not completely explain though.

In this work we study the behaviour of a neural network, used to classify images, through
a physical model, based on statistical thermodynamics. We found interesting results
regarding the temperature of the different components of the network, that may be
exploited in a more efficient training algorithm.
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Chapter 1

Neural Networks

In this chapter we study neural networks. Starting from a brief historical digression,
we then introduce a non trivial example of neural network, the linear classifier, which is
an evolution of the first ever attempted approach: the perceptron. We eventually describe
more complex networks used in image recognition problems, the convolutional neural
networks.

We are also going to explain the process of training and optimizing a neural network,
using as toy example the linear classifier, which is easier to understand and describe in
its functioning, with respect to convolutional neural networks.



Chapter 2

Dynamics of the Model

In this chapter we introduce the physical model we want to use to describe a
convolutional neural network. Our formulation of the model employs the theory of
statistical thermodynamics: we first start by explaining the parallelism between a neural
network and a thermodynamical system, then, we present our interpretation of the actual
dynamics of the network.

We conclude the chapter with a section about how the thermodynamical concept of
temperature can be expressed in the system of the neural network, a topic we investigate
further with numerical simulations.



Chapter 3

Simulation Results

In this chapter we introduce the architecture used and we report the results of the
numerical simulation.
Inspired by the work of P. Chaudhari and S. Soatto ([14]), that linked the concept of
temperature of the network to the learning rate 1 and batch size |B|, we focused on
finding the relation between these quantities, that is T'(n, |B|). In order to achieve this,
we changed the two values of 17 and 8 to observe how the velocities, and the temperatures,
of the layers varied.
We also show the differences that occur inside a single layer, between all the weights.
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